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Shock waves  a r e  fo rmed  in the channels  between blades in a c o m p r e s s o r  working in the t r a n s -  
sonic state,  and the posi t ions of these  va ry  per iodica l ly  and produce s t rong v ib ra t ions  in the 
blades.  The effect  is  ex t r eme ly  complex  and is dependent on a la rge  number  of p a r a m e t e r s .  
Here  we p resen t  a s implif ied model for  the effect,  which can be examined theore t ica l ly .  It is 
a s sumed  that  the nonstat ionary pulsat ions in the flow and the ampli tudes  in the osci l la t ions  of 
the shock waves  a r e  smal l ,  and t he re fo re  one can employ a s t eady- s t a t e  flow whose c h a r a c -  
t e r i s t i c s  may be taken as given, including the mean posit ion of the shock waves .  

1. We cons ider  a p lanar  potential  flow of baro t rop ic  gas in a set  of thin slightly curved  blades;  the 
flow at the inlet is a s sumed  unper turbed  and supersonic ,  while at the outlet it is subsonic.  Within each 
channel between the blades the re  is a s t ra ight  shock wave of smal l  intensity; the flow beyond the shock 
wave then r e m a i n s  potential  to a f i r s t  approximat ion.  The shapes  of the blades osc i l la te  in accordance  
with a specif ied harmonic  law having a c i r c u l a r  f requency w and a constant  phase  shift ~ between adjacent  
blades.  The amplitude of the oscil lat ion is cons ide red  as smal l  re la t ive  to the chord  b of the blades.  In 
general ,  one gets behind the blades a s y s t e m  of eddies due to the change in the c i rcu la t ion  around each 
blade. The eddies can be s imulated as l ines of contact  discontinuity, which a r e  cons idered  to be disposed 
along s t ra ight  l ines  that const i tute  continuations of the blade co res .  

To each blade we ass ign in sequence the numbers  n =0, * 1 . . . .  (Fig.  1); the f i r s t  blade (n =0) is 
linked to a ca r t e s i an  coordinate  s y s t em  x, y ~l th its origin at the leading edge of the nonvibrat ing blade. 
The x axis l ies  along the chord  of that blade, while the y axis is d i rec ted  upwards.  Let  /3 be the angle of 
at tack,  h the pitch of the blades,  and Ln (9, Ln(2) the contours  of the upper  and lower  s ides of bl.a~te n ree  
spect ively,  w e b  ~2 n flow region bounded by the front  of the set  of blades,  the contours  Ln(1) , Ln(~l and the 
lines of contact  discontinuity (Fig. 1): 

Ca : x ~  b -~nhs in [} ,  y = nhcos[~ 

C n + x : x ~ b + ( n - ~ t )  hsin[~, y = (n-t- |)hcos[~ (1.1) 

The veloci ty  potential  (p (x, y, t) sa t i s f i es  the following equation In the genera l  case  for  the region 
12 n and Dn: 

[a, 2 --  (u --  t) {T, + ' / ,  [(VcP) 2 - -  V,. Vx]}] AT = r + [~/- 1- - ~  (Vcp. V)] (V~) 2 (1.2) 

where  u and a 1 a re ,  r espec t ive ly ,  the ve loc i ty  vec to r  and the speed of sound in the unper turbed  supersonic  
flow in front  of the blades,  while ~ is the adiabatic constant  and t is t ime.  

The following a re  the boundary conditions in the regions  ~n, in which the gas flow is supersonic :  
the condition that  the gas does not flow through the contour  L n =L~) +L(n ~) (n =0, * 1 . . . .  ) 

{V~--V1--w~")}.~.=0 for  ( x , y ) ~  L. (1.3) 

and the absence of perhlrbations in the gas along the Maeh lines diverging from the leading edges: 

q~ (x, y, t) = Vx.r (1.4) 
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Fig. 1 

Here  r is the rad ius  v e c t o r  of the point, Pn is the no rma l  to Ln, and 
w(n) is the vec to r  fo r  the d i sp lacement  of the points on contour  L a. 

The flow is subsonic  in reg ions  Dn; the boundary conditions for  
these  reg ions  a re :  condition (1.3) above at the points on L n, and the 
condition that  the normal  component  of the gas ve loc i ty  behind R n is 
equal to some value ~0x+, which will be der ived  below: 

~ = ~=+ for (x, y) E B .  (n = O, ~ i . . . .  ) (1.5) 

toge the r  with the condition of continuity for  the p r e s s u r e  p on the l ines  
of contact  discontinuity:  

I p l = 0  f o r ( = , y )  E C .  ( n = 0 , •  . . . .  ) (1.5) 

We also a s s um e  that  Zhukovskl i ' s  postula te  about the p r e s s u r e  continuity appl ies  to the r e a r  edges  
of all  blades.  

The initial condit ions a r e  not speoifiod as we a re  a s suming  a harmonic  law of motion fo r  the gas as a 
function of t ime.  

Condition (1.5) contains  the unknown funetion ~0x+, which has  to be de te rmined  f r o m  equations fo r  the 
R n (n=O, �9 I ,  ...)- 

p_o_(~-~<)=p+-p_, p_o_=e+o+ 
(1.7) 

p_ [(~ + t)  9 - (x - l )  ~+l = p_ [(~ + t )  o+ - (• - t )  p_] 

Here  p is gas  densi ty  and 0 is the propagat ion speed of the shock wave, while the subsc r ip t s  minus 
and plus define the l imit ing values  of the hydrodynamic  quant i t ies  as one approaches  Rn f r o m  left  and right,  
r e spec t ive ly ,  while the p r e s s u r e  p is r e la ted  to the ve loc i ty  potent ial  ~0 by the C a u c h y - L a g r a n g e  integral  

I dp i 
-7- + ~-~ + ~- [(v~)'- - v,~l =: o (1.s) 

P, 

where  Pl is the p r e s s u r e  in the unper turbed  flow. 

Sys tem (1.7) contains 7 unknown functions: the d i sp lacement  speed N of the shock wave,  the ve loc i -  
t i e s  ~ x  +, ~0x-, the dens i t i es  p+, p_ and a lso  ~ t  +, q~t-; of these ,  only th ree  quant i t ies  (q~x-, g~ and p_) 
a r e  de te rmined  by solving (1.2)-(1.4) in the supersonic  region,  so 0 .7)  f o r m s  an unclosed sys tem.  

To obtain the additional equation we use  the condition for  continuity in the tangent ia l  components  of the 
the ve loc i t ies  ~y+=~0y- at  the s t ra ight  shock wave,  which gives  

[~] = cons t  for  ( x , y ) ~ B ,  (n ----- 0, • t . . . .  ) (1.9) 

We di f ferent ia te  (1.9) with r e s p e c t  to t and get a fu r the r  condition fo r  Ru: 

%+ = ~t- (1.10) 

which closes system (1.7). 

2. We r e p r e s e n t  the ve loc i ty  potential  ~ (x, y, t) in the f o r m  

q~ (x, y,  t) = % (x, y) + ba I (I) (x, Y) ei~' (2.1) 

where  ~00 (x, y) is that potential  for  the s t eady - s t a t e  flow of the gas around the mot ionless  blades,  and @ 
(x ,y)  is a d imens ion less  ampli tude function for  the veloci ty  potential  of the additional nonsta t ionary  flow. 

We a s sum e  that  the ve loc i ty  dis t r ibut ion for  the s ta t ionary  flow in regions  fin and D n is not dependent 
on n =0, • 1, ... and di f fers  l i t t le f r o m  the ve loc i ty  distr ibution for  the co r re spond ing  ave raged  motion. 
This  assumpt ion  goes  with the s m a l l n e s s  of the v ibra t ion ampli tude to give us l inear  equations for  �9 (x, y) 
in the reg ions  ~2n and Du, these  being independent of the p a r a m e t e r s  of the s ta t ionary  motion. The depen-  
dence of @ on these  p a r a m e t e r s  a p p e a r s  only v ia  condition (1.7) at the shock waves .  Here ,  as  will be 
shown, it is sufficient  to know the mean posit ion of the shock wave in the channel between blades in o rde r  
to ca lcula te  the nons ta t ionary  flow, provided that  the magnitude of the p r e s s u r e  discontinuity in the s t a -  
t ionary  flow at the shock wave is known. We a s s u m e  in what follows that these  p a r a m e t e r s  a r e  given. 
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Then within the f r a m e w o r k  of these  assumpt ions  it is sufficient to cons ider  the solution for  �9 (x, y) in 
the l inear  formulat ion;  we denote by ~l and ~2 the va lues  of �9 in the supersonic  and subsonic flow regions  
respec t ive ly .  Then �9 in the flow region should sa t i s fy  

2,~ M m --  ~---~' O~---- 0 /Mk--- V-L; k =  i ,2)  (2.2) (M~' --  i) 0~.~ --  Ok~ + ~ k ~ x  a~ ~ ak 

where V 2 and a z are certain average values of the flow velocity and speed of sound in the subsonic flow 
region. 

The following are the boundary conditions for the regions ~n (n =0, �9 1, ...): 

O,v  = M , W ( ~  ) + icoal - 'W (n) for xn < x < x. + x,, y = g~ (2.3) 

(xn = nh sin ~, y.  == nh cos ~) 

r  = 0 (2.4) 

on the Mach lines diverging f r o m  the leading edges.  

The following a re  the boundary conditions for  $2 in the regions  D n (n =0, + 1, ...): 

(n) a~ 

for  x. n u x ~ < x < b T x . ,  y = y ~  

0 2 ~ =  (l)~ + for  x - - - x .  + x , ,  Yn < Y ~ Y , + ,  (2.6) 

[ i ~ O  2-{- V,q)2x] = 0  for x > b  ~ -x , ,  y = y, (2.7) 

Here  the boundary conditions have been t r a n s f e r r e d  to s t ra igh t  l ines pa ra l l e l  to the x and y axes,  
while x ,  is  the a b s c i s s a  of the mean posit ion of the shock wave at the upper  side of the initial  blade, while 
the d imens ion less  function W (n) (x) is defined by 

w ',~) (x, t) = bW( ' )  (x) e ~t (2.8) 

where  w(n) is the project ion on the y axis  for  the d i sp lacement  vec to r  of blade Ln. Also,  (2.7) combines  the 
condition at the eddies and the Zhukovskli  postulate.  

The p rob l em  of (2.2) and (2.5)-(2.7) is re la ted  to that  of (2.2)-(2.4) by the equations for  the d i scon-  
t inuity (1.7) and the additional condition 

O, + = 0 I- (2.9) 

which is a consequence of (1.10). 

3. The law chosen for  the v ibra t ions  of the blades  gives 

W(') (x) ---- W (~ (x) e t~, F(~) (x) = F(~ e"~ (3.1) 

Then as  the boundary-value  p rob lem of (2.2)-(2.7) is l inear ,  it follows that  �9 sa t i s f i es  the genera l ized  
per iod ic i ty  condition 

(I)(x + nh sin ~, y + nh  cos ~) = �9 (x, y) e i"~ (3.2) 

Condition (3.2) enables  one to r e s t r i c t  the solution to the regions  120 and Do; the solution to (2.2)-(2.4) 
in region 120 is not dependent on the oonditions of (1.7) at R 0 and can be obtained by methods p re sen ted  in 
[i, 2]. 

We now pass to construction of the solution for region Do; we introduce the amplitude function ~ (x, 
y) for the acceleration potential, which is related to ~ (x, y) by 

IF = i~ (]), -~ V20,x (3.3) 

The inve r se  re la t ionship  of ~2 to ~ is 

e - i~ /v '  i ~F(u, y ) e i ~ / V , d u  (3.4) 
t (I), (x, y) = r (z, ,  y) + 

xe 
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T h e  def in i t ion  of (3.3) and the  condi t ion  of (2.7) t o g e t h e r  mean  tha t  ~ is  con t inuous  e v e r y w h e r e  in the  

r e g i o n  D = ~ ( D ,  + C,) and s a t i s f i e s  (2.2) wi th  k = 2  in th i s  r eg ion ;  t h e r e f o r e ,  it r e m a i n s  to m e e t  condi t ions  
- - co  

(2.5) and (2.6), which  on the  b a s i s  of  (3.1) and  (3.4) t ake  the f o r m  

Vs i F  {~ (x) - -  F (~ (x . ) ]  = e - i=~ /v ,  I ira i LF~ (u, y) e i '~  / v, du (x.  - -  x, ~ x ~ b) (3 .5 )  

Vs@~(y) = �9 (x,, y) (0 ~ y ~ y,) (3.6) 

We s e e k  ~z by s u p e r p o s i t i o n  of  s i n g u l a r i t i e s ,  f o r  which p u r p o s e  we d i s p o s e  a long  the s t r a i g h t  l ine 
x = x .  +xn,  Yn < Y< Yn+t  (n=0 ,  ~1 ,  . . . ) ,  whi le  a long  s t r a i g h t  l ines  x ,  + x  n - x ~ <  x <b  + x  n, y =Yn we p lace  
a s y s t e m  qn(Y) of  d ipo les  ~/n(X); (3.2) i m p l i e s  tha t  

q, (Y) = q (Y) eln~, Yn (Y) = '~ (Y) e irv~ (3.7) 

Then  the  r tha t  s a t i s f i e s  (2.2) can  be r e p r e s e n t e d  f o r  the  po in t s  (x, y) ~ D o and 

r Y . + l  

IS n 
b+a-. 

~'. § x.Tr ! 

exp (z 
r 2 ~  

(3.8) 

w h e r e  H (2), Hi(2) a r e  Hanke l  funct ions  of  the second  kind, whi le  

co V ( x  - -  x ,  - -  x . )  2 + ( t  - -  M =  "~) (y  - -  ~}) ~ 
rln = a~ (t -- ;4~=) 

o) 
r~. = a, (t -- M)2z ] / ix , - -  ~)2 + (t - -  M= 2) (y - -  y.)2 

(3 .9 )  

We subs t i tu te  (3.8) into (3.5) and (3.6) to get  a s y s t e m  of two i n t eg ra l  equa t ions  fo r  q 07) and T (~). 
H e r e  one mus t  b e a r  In mind tha t  the  second  group  of t e r m z  in (3.8) has  a s i n g u l a r i t y  a t  ~ =x.  

4. Equat ion  (3.6) c o n t a i n s  the  unknown funct ion &+x, which should be d e t e r m i n e d  f r o m  (1.7) and (I .10);  
we c o n s i d e r  th i s  in m o r e  de ta i l .  The  f i r s t  of the equa t ions  in (1.7) con t a in s  the p r o p a g a t i o n  speed  f o r  the  
s t r a i g h t  shock  wave  R0, which  is  def ined  by  

8--= N - -  ~= (N = OXw /Ot, xw (y, t) = x ,  + R e  {s(y) e~=f}) (4.1) 

H e r e  N is  the  d i s p l a c e m e n t  speed  of R 0 in the  d i r e c t i o n  of  the x ax i s ,  while  x w is  the a b s c i s s a  of the  
shock  wave  on L0 (1) a t  t i m e  t, and e (y) is the  c o m p l e x  ampl i t ude  of the shock  wavc .  

We r e p r e s e n t  the  p r e s s u r e  and  dens i ty  in the  f o r m  

P = P0 + Re {p' ei~}, P = P0 + Re {9'e ~=t} (4.2) 

w h e r e  P0 and P0 a r e  the  p r e s s u r e  and dens i ty  in the  s t a t i o n a r y  flow, whi le  p '  and o ' a r e  the c o m p l e x  a m p l i -  
tude  func t ions  fo r  n o n s t a t i o t m r y  c o m p o n e n t s  of  the  p r e s s u r e  and dens i ty ,  r e s p e c t i v e l y .  

We subs t i tu te  (2.1), (4.1), and (4.2) into (1.7) and use  (1.10) to  get  

pc* (v~ + q,o2) = pc- (v, + qD;~) 

pc* [ ( •  + t )  pc- - -  (• - -  ! ) po+ ]  = pc-  [(• + i )  pc + - -  (x  - -  t )  Po-] ( 4 . 3 )  

~ . '  - -  P_')/Po- = (~-o= --  % x + ) [ b a l ~ (  - i~r + (V, + (Pox-) p_'/po-]+bal (V~ + %if) ((I)( - -  q>=+) (4.4) 

baz [(VI + T0x-) O~ + - -  (Vz -{- T0~ +) Ox-] --- i~e (%~- --(POx +) + (V, + % / )  (V0 + %x-) [O_' / P0- - -  P+' / Pc +] (4.5) 

p ' + / p o  + - x p ' + / 9 0  + = 0, p ' / p o - - - •  = 0 (4.6) 
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Fig. 2 

Equations (4.3) re la te  the hydrodynamic quant i t ies  on the different  
s ides  of the shock waves  in the s ta t ionary  flow, while (4.4)-(4.6) es tab l i sh  
an additional re la t ionship  for  the nonsta t ionary  flow. The l a t t e r  r e l a t ion-  
ships a r e  c o r r e c t  to quant i t ies  of the f i r s t  o rde r  of sma l lnes s  and enable 
us to de te rmine  @x + and s v ia  the known hydrodynamic p a r a m e t e r s  of 
the supersonic  flow. For  this  purpose  it is convenient  to use  the a c c e s s o r y  
re la t ionship  

p '  p '  ~ - -  i 

which follows f rom the equali ty of the coeff icient  to A~o in (1.2) to the 
square  of the speed of sound a 2 = u p [ o  ; then (4.7) gives f r o m  (4.4)-(4.6) 
the following expres s ions  for  ~x +, g: 

(~)x + ~ | (• - -  1) (V~ + ~,~-) - -  (• ~- 1) (V, 4- ~.,x +) • 

• I(x +. t)  .(V~ + ~ o ; )  - (• - i) (v~ + %.$)] O.C - -  ,, + i 
(~"~- -- r176 (I)-} 
(Vl + ~":,-F 

(4.8) 

iba t  (~o:~- - -  ~x +) f 

e ---- -- ,  [ ( x - - t ) (V ,  + V0~-) - -  (x d- 1)(Vx ,J- q)~x+)] ~(x + t ) O = -  ~- (4.9) 

Fo rmu la s  (4.8) and (4.9) comple te ly  c lose  the s y s t e m  of (2.2)-(2.7) for  the additional ve loc i ty  poten-  
t ia l  of the nons ta t ionary  motion. 

5. We now de te rmine  the nonsta t ionary  components  of the l i f t .AP n and torque AM n act ing on blade 
n; f r o m  (3.2) we have 

A P.  = Re {APe+(=f+"~)), AM. = Re {hMd(=t+"~)} (5.1) 

where  AP and AM are  the complex  ampl i tudes  of the above quanti t ies  on the initial blade; the va lues  of 
these  a r e  dependent on the p r e s s u r e  distr ibution along the v ibra t ing  blade and on the d isp lacement  amp l i -  
tude of the shock wave on the upper  and lower  s ides of the blade, toge ther  with the discontinuity in the s t a -  
t ionary  p r e s s u r e  at the shock waves .  We have as  follows fo r  the r e su l t s  fo r  the supersonic  and subsonic 
flows: 

x.-Xx b x I 
A P =  I p , ' ( x , - 0 ) ~ +  I pr (x, - -  0) dx - -  p , ' (~ ,  + 0 ) a , - -  

0 x . - x l  0 

b 

- -  I P2' (x ,  + 0) dx H- (P0 + - -  P0-) Is (0) - -  e (y:) e -~ ]  (5 .2 )  
:r 

x . -x t  b 

= ~ ~p,, (x, - 0) d~ + ~ ~p~'(~, - 0 ) ~  - AM 
0 X,--~l 

:t, b 

-- I xp; (x, H- O~dx -- I xp~' (x, -b O) dx ~- (po + -- Po-) [x,e (0) -- (x, -- x,) 8 (y,) e-'~] (5 

Here  Pl ' ,  P2' a r e  the values  of p '  in the supersonic  and subsonic flow regions  respec t ive ly ,  while the 
aerodynamic  to~lue is calcula ted re la t ive  to the leading edge of a blade; (5.1)-(5.3) show that one needs  to 
know eb 1 and ~2 in o rde r  to ca lcula te  the nons ta t ionary  hydrodynamic reac t ions  at the blades within the 
f r a m e w o r k  of this  model,  toge ther  with the osci l la t ion ampli tude of the shock waves ,  the mean 'pos i t ion  of 
the shock waves ,  and the discontinuity in the s ta t ionary  p r e s s u r e  at these  waves  on the initial blade. 

As an example ,  Fig. 2 shows re su l t s  for  the d imens ion less  v ibra t ion  ampli tude -g = [ s I / b  (solid 
lines) and the phase  a (broken lines) for  the shock wave ( s = I ~ I e in) for  a set  of b lades  in re la t ion to the 
mean posi t ion of the shock wave x .  = x , / b  fo r  va r ious  va lues  of k = r 1. 

The blades p e r f o r m  antiphase to r s iona l  v ibra t ions  about the leading edge with ampli tude l a l  =0.01; 
the calculat ion has  been p e r f o r m e d  fo r  M 1 =1.1, (p0x = 0.05, (Pox += -0 .225  a 1. 
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The r e su l t s  show that  the osci l la t ion ampli tude of the shock wave tends to diminish as  one r ecedes  
f rom the leading edge, while the re  is a m a r k e d  dependence of { on the Strouhal number .  Also,  in this  
example  a v a r i e s  in the range  [0, ~], which means  that  the to r s iona l  osc i l la t ions  a re  damped by the shock 
waves .  
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