NONSTATIONARY GAS FLOW WITH SHOCK WAVES
IN A SUPERSONIC COMPRESSOR
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Shock waves are formed in the channels between blades in a compressor working in the trans-
sonic state, and the positions of these vary periodically and produce strong vibrations in the
blades. The effect is extremely complex and is dependent on a large number of parameters.
Here we present a simplified model for the effect, which can be examined theoretically. It is
assumed that the nonstationary pulsations in the flow and the amplitudes in the oscillations of
the shock waves are small, and therefore one can employ a steady-state flow whose charac-
teristics may be taken as given, including the mean position of the shock waves.

1. We consider a planar potential flow of barotropic gas in a set of thin slightly curved blades; the
flow at the inlet is assumed unperturbed and supersonic, while at the outlet it is subsonic. Within each
channel between the blades there is a straight shock wave of small intensity; the flow beyond the shock
wave then remains potential to a first approximation. The shapes of the blades oscillate in accordance
with a specified harmonic law having a circular frequency w and a constant phase shift u between adjacent
blades. The amplitude of the oscillation is considered as small relative to the chord b of the blades. In
general, one gets behind the blades a system of eddies due to the change in the circulation around each
blade. The eddies can be simulated as lines of contact discontinuity, which are considered to be disposed
along strafght lines that constitute continuations of the blade cores.

To each blade we assign in sequence the numbers n=0, £1, ... (Fig. 1}; the first blade (n=0) is
linked to a cartesian coordinate system x, y withitsorigin at the leading edge of the nonvibrating blade.
The x axis lies along the chord of that b 1?de while the y axis is directed upwards. Let 3 be the angle of
attack, h the pitch of the blades, and Ln L, (2) the contours of the upper and lower sides of blade n re~
spectively, with @, flow region bounded by the front of the set of blades, the contours L, (1) Ln(.,_1 and the
lines of contact discontinuity (Fig. 1):

C.:x2>b+ nhsinf, y=nhcosB

Conn:x>b+m+1hsinp, y=(n+ 1hcosp (1.1

The velocity potential ¢ (x, y, t) satisfies the following equation in the general case for the region
2y and Dy:

— (¢ — D) {@r+ s (VO — V2 Vi1 A9 = @ur + [ 5 + - (Vo V) (Ve (1.2)

where V, and a, are, respectively, the velocity vector and the speed of sé)und in the unperturbed supersonic
flow in front of the blades, while w is the adiabatic constant and t is time.

The following are the boundary conditions in the regions Q,, in which the gas flow {s supersonic:
the condition that the gas does not flow through the contour L, = L(i) +L(2) {n=0, £1, ...)

{Vo—V,—w "’} v.=0 for (z,y)E L (1.3)
and the absence of perturbations in the gas along the Mach lines diverging from the leading edges:
?(z, ¥, ) = Vyor (1.4)
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Here r is the radius vector of the point, »p is the normal to Ly, and
w(n) §s the vector for the displacement of the points on contour Ly.

The flow is subsonic in regions D, ; the boundary conditions for
these regions are: condition (1.3) above at the points on L, and the
condition that the normal component of the gas velocity behind R, is
equal to some value ¢,*, which will be derived below:

Py = ‘P; f_Qr (l', y) == Rn (n =0, = 1’ .. ‘) (1'5)

together with the condition 6f continuity for the pressure p on the lines
of contact discontinuity;

[pl =0 for (z, ) =Cn (n=0,41,..) (1.6)

We also assume that Zhukovskii's postulate about the pressure continuity applies to the rear edges
of all blades.

The initial conditions are not specified as we are assuming a harmonic law of motion for the gas asa
function of time.

Condition (1.5) contains the unknown function qox+, which has to be determined from equations for the
Ry (n=0, +1,...):

p.0_ (9. —¢.)=p,—p, p.8_=0p, 0,
(1.7)
plx 1o —w—1DpJ=p l(x +1)p, — (x—1)p]

Here p is gas density and 6 is the propagation speed of the shock wave, while the subscripts minus
and plus define the limiting values of the hydrodynamic quantities as one approaches Ry from left and right,
respectively, while the pressure p is related to the velocity potential ¢ by the Cauchy —Lagrange integral

P
243 TR = Vi =0 (1.8)

P

where p, is the pressure in the unperturbed flow.

System (1.7) contains 7 unknown functions: the displacement speed N of the shock wave, the veloci-
ties ¢+, ¢4, the densities p,, p_ and also ¢¢t, ¢~; of these, only three quantities (¢x-, ¢, and p.)
are determined by solving (1.2)-(1.4) in the supersonic region, so (1.7) forms an unclosed system.

To obtain the additional equation we use the condition for continuity in the tangential components of the
the velocities <py+=<py‘ at the straight shock wave, which gives

[¢] = const for (z,y) =R, (n =0, + 1, ...) (1.9)
We differentiate (1.9) with respect to t and get a further condition for Ry:
ot = @ (1.10)

which closes system (1.7).
2. We represent the velocity potential ¢ (x, y, t) in the form
?(z, ¥, ) = @ (2, §) + ba; O (x, y) eie 2.1

where ¢, (%, y) is that potential for the steady-state flow of the gas around the motionless blades, and &
(x, y) is a dimensionless amplitude function for the velocity potential of the additional nonstationary flow.

We assume that the velocity distribution for the stationary flow in regions Q, and Dy is not dependent
onn=0, %1, ... and differslittle from the velocity distribution for the corresponding averaged motion.
This assumption goes with the smallness of the vibration amplitude to give us linear equations for & (x, y)
in the regions Qp and Dp, these heing independent of the parameters of the stationary motion. The depen-
dence of ® on these parameters appears only via condition (1.7) at the shock waves. Here, as will be
shown, it is sufficient to know the mean position of the shock wave in the channel between blades in order
to calculate the nonstationary flow, provided that the magnitude of the pressure discontinuity in the sta-
tionary flow at the shock wave is known. We assume in what follows that these parameters are given.
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Then within the framework of these assumptions it is sufficient to consider the solution for & (x, y) in
the linear formulation; we denote by &; and &, the values of & in the supersonic and subsonic flow regions
respectively. Then & in the flow region should satisfy

2i w? v
(M2 = 1) Qg — Dy + 22 M Dy, — D=0 (M= T2 k= 1,2) 2.2)

where V, and a, are certain average values of the flow velocity and speed of sound in the subsonic flow
region.

The following are the boundary conditions for the regions @, (n=0, £1, ...):

Oy = MW + i W™ for z, Lz T+ Tny Y = ¥n (2.3)
(z. = nhsin B, y, = nhcos B)
o, =0 (2.4)

on the Mach lines diverging from the leading edges.
The following are the boundary conditions for &, in the regions Dy, (n=0, 1, ...):

Oy =[ MW + 22 W) L2 = Fo) (2)

2.5)

forz, +z, <z b4z, y =yn
(sz = q)b:+ for z = Ty + Zn, Yn < Yy < Yn+1 (2-6)
li(!) (D2 '{- VZG)ZXI =90 fOI‘ X > b -+— ZTny Y = Yn (2-7)

Here the boundary conditions have been transferred to straight lines parallel to the x and y axes,
while x, is the abscissa of the mean position of the shock wave at the upper side of the initial blade, while
the dimensionless function W™ (x) is defined by

wn (.’L', t) = bWm (.Z') e ol (2.8)

where w(b) is the projection on the y axis for the displacement vector of blade L. Also, (2.7) combines the
condition at the eddies and the Zhukovskii postulate.

The problerh of (2.2) and (2.5)-(2.7) is related to that of (2.2)-(2.4) by the equations for the discon-
tinuity (1.7) and the additional condition

Q=0 (2.9)
which is a consequence of (1.10).
3. The law chosen for the vibrations of the blades gives
W (z) = WO (2) ein, F® (2) = FO)(x) eint (3.1

Then as the boundary-value problem of (2.2)-(2.7) is linear, it follows that & satisfies the generalized
periodicity condition

®(z + nhsin B, y + nhcos f) = @ (z, y) em* (3.2)

Condition (3.2) enables one to restrict the solution to the regions Q, and Dy; the solution to (2.2)-(2.4)
in region Q, is not dependent on the conditions of (1.7) at R; and can be obtained by methods presented in
[1, 2}.

We now pass to construction of the solution for region Dy; we introduce the amplitude function ¥ (x,
y) for the acceleration potential, which is related to &, (x, y) by

¥ =io®, + V0, (3.3
The inverse relationship of &, to ¥ is

X

Dy (2, ) = Da(ag, ) + 5 /% { ¥ (u, y) eion Ve (3.4)

o
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The definition of (3.3) and the condition of (2.7) together mean that ¥ is continuous everywhere in the

region D = E(Dn + C,) and satisfies (2.2) with k=2 in this region; therefore, it remains to meet conditions

—c0

(2.5) and (2.6), which on the basis of (3.1) and (3.4) take the form

Vs lFO (2) — FO(z,)] = o=V lim § ¥, (u, g) 62 Vedu (g, — 2, <2 <) (3.5)
U“ox.

Valu(¥) = ¥ (20 %) O<y<<y) - (3.6)

We seek ¥ by superposition of singularities, for which purpose we dispose along the straight line
X=X 4 +Xp, ¥n < Y<¥n+q (0=0, £1,...), while along straight lines x, + X, —X;< x <b +Xp, ¥y =y, we place
a system qp(y) of dipoles y,(x); (3.2) implies that

_ gn (¥) = ¢ (W) €™, va (¥) = v (y) e 3.7
Then the ¥ that satisfies (2.2) can be represented for the points (x, y) € D; and

Vn+l

Y= X e | amHP ()

bexg (3 8)
M ¢ .
X exp[ o w—m|dn+ | 1@ x
Fg+ Xy =Xy

y — nh cos BH‘”

x == (ran) €xp [IIT:(D——MT:TW (z— §)] d’é}

where Ho(z), H1(2) are Hankel functions of the second kind, while

o= e Y E =2~ A= TAG

(3.9)
Vie—8+ (1 — M2 (y — ya)

Tap =

ar(1 — M2
We substitute (3.8) into (3.5) and (3.6) to get a system of two integral equations for g (n) and v (£).
Here one must bear in mind that the second group of terms in (3.8) has a singularity at § =x.

4. Equation (3.6) contains the unknown function é&, which should be determined from (1.7) and (1.10);
we consider this in more detail. The first of the equations in (1.7) contains the propagation speed for the
straight shock wave Ry, which is defined by

8 =N — ¢, (N = dzw /3, 2w {y, t) = 7, + Re {e (y) '} 4.1

Here N is the displacement speed of Ry in the direction of the x axis, while xyy is the abscissa of the
shock wave on L0 () at time t, and e(y) is the complex amplitude of the shock wave.

We represent the pressure and density in the form
P =Dpo+ Re{p e}, p =p, 4 Re {p'ei'} 4.2)

where py and p, are the pressure and density in the stationary flow, while p’ and p ' are the complex ampli-
tude functions for nonstationary components of the pressure and density, respectively.

We substitute (2.1), (4.1), and (4.2) into (1.7) and use (1.10) to get
P — Po” = 05" (V; + 95) (@ox — Fox)
Pt (Vi + @ox) = po” (V) + @x)
pot [(x + 1) p™ — (2 — 1) po*] = po~ [(x + 1) po* — (e —1) o] (4.3)
P, = pVpw = (@0x — 90"V [0, @, —joe + (Vi + @0) p_"lpg 1 4-bay (Vi + @) (O, — D) 4.4)
ba, (Vi + @0:7) @ — (V) -+ 00.") D] = i08 (Por” —Fox”) + (Vi + @0,") (Vo + Qo) 10/ 0o — p,’ [ po*l  (4.5)

P/ bt — 'y lpo" =0, p_/p7 —xp_ '/ pe =0 (4.6)
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g —_— 6 Equations (4.3) relate the hydrodymamic quantities on the different

S
k=0 sides of the shock waves in the stationary flow, while (4.4)-(4.6) establish
an additional relationship for the nonstationary flow. The latter relation-
- k=01 ships are correct to quantities of the first order of smallness and enable
\:\:\:"~\ "~ us to determine ‘I’x+ and € via the known hydrodynamic parameters of
\Q‘\\J‘~\\ ~(0.2" the supersonic flow. For this purpose it is convenient to use the accessory
AN relationship
N T8I
0.0 N t i i —1 i
B e N L & o 2oL bayge (Vs + 900 Dy + 10D @.n
S5
&, N which follows from the equality of the coefficient to A¢ in (1.2) to the
0.9 square of the speed of sound a?= wp/p ; then (4.7) gives from (4.4)~(4.6)
+ .
F"s‘ the following expressions for &4", ¢£:
_ . . 1
_ Ix {g o = =D+ o) — & LD T o) ~
a 9.5 X {I(" F V14 @ox) — (¢ —DN(V1 4+ @0 O — m)u(:_: L) (4.8)
(@oe” — @ra*P p
Fig. 2 ey}
_ ibay (@oa~™ — Pox?) _ ’im (x—1) y_
£ = — ST DT T e — e DV T (¢ DO+ e o (4.9)

Formulas (4.8) and (4.9) completely close the system of (2.2)-(2.7) for the additional velocity poten-
tial of the nonstationary motion.

5. We now determine the nonstationary components of the lift. AP, and torque AM, acting on blade
n; from (3.2) we have

AP, = Re {APeie+mt}, AM, = Re {AMeitotrm} (5.1)

where AP and AM are the complex amplitudes of the above quantities on the initial blade; the values of
these are dependent on the pressure distribution along the vibrating blade and on the displacement ampli-
tude of the shock wave on the upper and lower sides of the blade, together with the discontinuity in the sta-
tionary pressure at the shock waves. We have as follows for the results for the supersonic and subsonic
flows:

X=Xy b x,
AP= § pi(e, —O)dz + § (s, —O)dz— § pi'(z, +0)dz —
0 Xo—Xy 1)
.
— § 2 (2, + 0V do + (po" — P07 [£(0) — () e (5.2)
Xg—Xy b :
aM = § ap/ @ —0dz+ § 2p (e, —0)dz —
1] Xy=Xg
x, b o
- S zpy (z, + O)dz — S zp, (z, + 0)dz + (po* — o) (748 (0) — (x4 — z1) £ (1) €] (5.3)
0 . Xo

Here p,', p,' are the values of p' in the supersonic and subsonic flow regions respectively, while the
aerodynamic torque is calculated relative to the leading edge of a blade; (5.1)-(5.3) show that one needs to
know &, and &, in order to calculate the nonstationary hydrodynamic reactions at the blades within the
framework of this model, together with the oscillation amplitude of the shock waves, the mean position of
the shock waves, and the discontinuity in the stationary pressure at these waves on the initial blade.

As an example, Fig. 2 shows results for the dimensionless vibration amplitude & = | e} /b (solid
lines) and the phase ¢ (broken lines) for the shock wave (€ = | £ | el®) for a set of blades in relation to the
mean position of the shock wave X« =x4 /b for various values of k= wb/,. ’

The blades perform antiphase torsional vibrations about the leading edge with amplitude |a@|=0.01;
the calculation has been performed for M, =1.1, ¢z = 0.05, 9ox*=—0.225 a,.
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The results show that the oscillation amplitude of the shock wave tends to diminish as one recedes
from the leading edge, while there is a marked dependence of £ on the Strouhal number. Also, in this
example ¢ varies in the range [0, 7], which means that the torsional oscillations are damped by the shock
waves,
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